Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering.

نویسندگان

  • J Pencer
  • T Mills
  • V Anghel
  • S Krueger
  • R M Epand
  • J Katsaras
چکیده

Using coarse grained models of heterogeneous vesicles we demonstrate the potential for small-angle neutron scattering (SANS) to detect and distinguish between two different categories of lateral segregation: 1) unilamellar vesicles (ULV) containing a single domain and 2) the formation of several small domains or "clusters" (approximately 10 nm in radius) on a ULV. Exploiting the unique sensitivity of neutron scattering to differences between hydrogen and deuterium, we show that the liquid ordered (lo) DPPC-rich phase can be selectively labeled using chain deuterated dipalymitoyl phosphatidylcholine (dDPPC), which greatly facilitates the use of SANS to detect membrane domains. SANS experiments are then performed in order to detect and characterize, on nanometer length scales, lateral heterogeneities, or so-called "rafts", in approximately 30 nm radius low polydispersity ULV made up of ternary mixtures of phospholipids and cholesterol. For 1:1:1 DOPC:DPPC:cholesterol (DDC) ULV we find evidence for the formation of lateral heterogeneities on cooling below 30 degrees C. These heterogeneities do not appear when DOPC is replaced by SOPC. Fits to the experimental data using coarse grained models show that, at room temperature, DDC ULV each exhibit approximately 30 domains with average radii of approximately 10 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small-angle neutron scattering to detect rafts and lipid domains.

The detection and characterization of lateral heterogeneities or domains in lipid mixtures has attracted considerable interest, because of the roles that such domains may play in biological function. Studies on both model and cell membranes demonstrate that domains can be formed over a wide range of length scales, as small as nanometers in diameter up to microns. However, although the size and ...

متن کامل

Hybrid and nonhybrid lipids exert common effects on membrane raft size and morphology.

Nanometer-scale domains in cholesterol-rich model membranes emulate lipid rafts in cell plasma membranes (PMs). The physicochemical mechanisms that maintain a finite, small domain size are, however, not well understood. A special role has been postulated for chain-asymmetric or hybrid lipids having a saturated sn-1 chain and an unsaturated sn-2 chain. Hybrid lipids generate nanodomains in some ...

متن کامل

Magnetic neutron scattering by magnetic vortices in thin submicron-sized soft ferromagnetic cylinders

Using analytical expressions for the magnetization textures of thin submicron-sized magnetic cylinders in vortex state, we derive closed-form algebraic expressions for the ensuing small-angle neutron scattering (SANS) cross sections. Specifically, for the perpendicular and parallel scattering geometries, we have computed the cross sections for the case of small vortex-center displacements witho...

متن کامل

Bilayer thickness mismatch controls domain size in model membranes.

The observation of lateral phase separation in lipid bilayers has received considerable attention, especially in connection to lipid raft phenomena in cells. It is widely accepted that rafts play a central role in cellular processes, notably signal transduction. While micrometer-sized domains are observed with some model membrane mixtures, rafts much smaller than 100 nm-beyond the reach of opti...

متن کامل

The Structure of Cholesterol in Lipid Rafts

Rafts, or functional domains, are transient nanoor mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking and lipid/protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short-lived. With a combination of coarse-grained ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2005